Phase Retrieval Via Reweighted Wirtinger Flow
نویسندگان
چکیده
Phase retrieval (PR) is a kind of ill-condition inverse problem which can be found in various applications. Based on the Wirtinger flow (WF) method, a reweighted Wirtinger flow (RWF) method is proposed to deal with the PR problem. In a nutshell, RWF searches the global optimum by solving a series of sub-PR problems with changing weights. Theoretical analyses illustrate that the RWF has a geometric convergence from a deliberate initialization when the weights are bounded by 1 and 109. Numerical tests also show the RWF has a lower sampling complexity compared with the WF. As an essentially adaptive truncated Wirtinger flow (TWF) method, the RWF performs better than the TWF especially when the ratio between sampling number m and length of signal n is small.
منابع مشابه
Phase Retrieval via Sparse Wirtinger Flow
Phase retrieval(PR) problem is a kind of ill-condition inverse problem which can be found in various of applications. Utilizing the sparse priority, an algorithm called SWF(Sparse Wirtinger Flow) is proposed in this paper to deal with sparse PR problem based on the Wirtinger flow method. SWF firstly recovers the support of the signal and then updates the evaluation by hard thresholding method w...
متن کاملPhase Retrieval via Incremental Truncated Wirtinger Flow
In the phase retrieval problem, an unknown vector is to be recovered given quadratic measurements. This problem has received considerable attention in recent times. In this paper, we present an algorithm to solve a nonconvex formulation of the phase retrieval problem, that we call Incremental Truncated Wirtinger Flow. Given random Gaussian sensing vectors, we prove that it converges linearly to...
متن کاملAn Elementary Proof of Convex Phase Retrieval in the Natural Parameter Space via the Linear Program PhaseMax
The phase retrieval problem has garnered significant attention since the development of the PhaseLift algorithm, which is a convex program that operates in a lifted space of matrices. Because of the substantial computational cost due to lifting, many approaches to phase retrieval have been developed, including non-convex optimization algorithms which operate in the natural parameter space, such...
متن کاملRobust Wirtinger Flow for Phase Retrieval with Arbitrary Corruption
We consider the robust phase retrieval problem of recovering the unknown signal from the magnitude-only measurements, where the measurements can be contaminated by both sparse arbitrary corruption and bounded random noise. We propose a new nonconvex algorithm for robust phase retrieval, namely Robust Wirtinger Flow to jointly estimate the unknown signal and the sparse corruption. We show that o...
متن کاملCompressive Phase Retrieval via Reweighted Amplitude Flow
The problem of reconstructing a sparse signal vector from magnitude-only measurements (a.k.a., compressive phase retrieval), emerges naturally in diverse applications, but it is NP-hard in general. Building on recent advances in nonconvex optimization, this paper puts forth a new algorithm that is termed compressive reweighted amplitude flow and abbreviated as CRAF, for compressive phase retrie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 56 9 شماره
صفحات -
تاریخ انتشار 2017